论文标题
谐波伯格曼投影仪上的均匀树木
Harmonic Bergman projectors on homogeneous trees
论文作者
论文摘要
在本文中,我们研究了$ q $ - 均匀树上的谐波伯格曼空间$ \ mathcal a^p(σ)$的某些属性,其中$ q \ geq 2 $,$ 1 \ leq p <\ iffty $,$σ$是辐射降低密度的降低密度,nondembount,nondemplous的有限量。这些空间由J.〜Cohen,F .〜Colonna,M。〜Picardello和D.〜Singman引入。当$ p = 2 $时,他们正在繁殖内核希尔伯特空间,我们明确计算其繁殖核。然后,我们研究伯格曼投影仪在$ l^p(σ)$上的有界性能,价格为$ 1 <p <\ infty $及其弱类型(1,1)的界限,以呈径向指数降低树上的措施。弱类型(1,1)的界限是伯格曼内核满足适当整体Hörmander状况的结果。
In this paper we investigate some properties of the harmonic Bergman spaces $\mathcal A^p(σ)$ on a $q$-homogeneous tree, where $q\geq 2$, $1\leq p<\infty$, and $σ$ is a finite measure on the tree with radial decreasing density, hence nondoubling. These spaces were introduced by J.~Cohen, F.~Colonna, M.~Picardello and D.~Singman. When $p=2$ they are reproducing kernel Hilbert spaces and we compute explicitely their reproducing kernel. We then study the boundedness properties of the Bergman projector on $L^p(σ)$ for $1<p<\infty$ and their weak type (1,1) boundedness for radially exponentially decreasing measures on the tree. The weak type (1,1) boundedness is a consequence of the fact that the Bergman kernel satisfies an appropriate integral Hörmander's condition.