论文标题

使用类似的地方先验改善挑战域中的道路细分

Improving Road Segmentation in Challenging Domains Using Similar Place Priors

论文作者

Malone, Connor, Garg, Sourav, Xu, Ming, Peynot, Thierry, Milford, Michael

论文摘要

诸如夜幕降临,雪或雨等具有挑战性的领域中的道路细分是一项艰巨的任务。大多数当前方法都使用微调,域适应性,样式转移或引用先前获得的图像来提高性能。这些方法具有三个重要限制中的一个或多个:依赖大量带注释的培训数据,这些数据可能是昂贵的,无论是预期在推理时预期的环境条件类型和/或从先前访问该地点捕获的图像中的环境条件的类型,这些数据的预期和培训数据。在这项研究中,我们通过基于类似位置改善道路细分来消除这些限制。我们使用Visual Place识别(VPR)找到相似但地理上不同的位置,并使用贝叶斯方法和新颖的分割质量指标进行查询图像和这些相似的位置的融合分割。消融研究表明,有必要重新评估VPR实用程序的概念。我们演示了在多种挑战性的情况下,包括夜间和雪(包括夜间和雪)实现最先进的道路细分性能的系统,而无需任何事先培训或以前访问相同的地理位置。此外,我们表明这种方法是网络不可知的,可以提高多种基线技术,并且与专门用于道路预测的方法具有竞争力。

Road segmentation in challenging domains, such as night, snow or rain, is a difficult task. Most current approaches boost performance using fine-tuning, domain adaptation, style transfer, or by referencing previously acquired imagery. These approaches share one or more of three significant limitations: a reliance on large amounts of annotated training data that can be costly to obtain, both anticipation of and training data from the type of environmental conditions expected at inference time, and/or imagery captured from a previous visit to the location. In this research, we remove these restrictions by improving road segmentation based on similar places. We use Visual Place Recognition (VPR) to find similar but geographically distinct places, and fuse segmentations for query images and these similar place priors using a Bayesian approach and novel segmentation quality metric. Ablation studies show the need to re-evaluate notions of VPR utility for this task. We demonstrate the system achieving state-of-the-art road segmentation performance across multiple challenging condition scenarios including night time and snow, without requiring any prior training or previous access to the same geographical locations. Furthermore, we show that this method is network agnostic, improves multiple baseline techniques and is competitive against methods specialised for road prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源