论文标题

泰勒 - 霍德家族的inf-sup条件的简短说明$ q_k $ - $ q_ {k-1} $

A short note on inf-sup conditions for the Taylor-Hood family $Q_k$-$Q_{k-1}$

论文作者

Zulehner, Walter

论文摘要

我们讨论了泰勒 - 霍德家族的两种类型的离散信息条件$ q_k $ - $ q_ {k-1} $ in \ mathbb {n} $ in \ mathbb {n} $ in 2d和3d中的$ k \ ge 2 $。在2D中,所有结果都适用于一般的六面体网格,但3D中的结果仅限于平行牵引的网格。该分析基于元素方面的技术,而不是广泛使用的宏观元素技术。这导致了细分的每个元素以及整个计算域上的INF-SUP条件。

We discuss two types of discrete inf-sup conditions for the Taylor-Hood family $Q_k$-$Q_{k-1}$ for all $k\in \mathbb{N}$ with $k\ge 2$ in 2D and 3D. While in 2D all results hold for a general class of hexahedral meshes, the results in 3D are restricted to meshes of parallelepipeds. The analysis is based on an element-wise technique as opposed to the widely used macroelement technique. This leads to inf-sup conditions on each element of the subdivision as well as to inf-sup conditions on the whole computational domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源