论文标题

高斯初始条件的非线性热方程式的标准通货膨胀

Norm inflation for a non-linear heat equation with Gaussian initial conditions

论文作者

Chevyrev, Ilya

论文摘要

我们考虑一个非线性热方程$ \ partial_t u =ΔU + b(u,du) + p(u) + p(u)$,$ d $ d $维圆环,其中$ p $最多是$ 3 $,$ b $的多项式,$ b $是一张双线性地图,不是总衍生品。我们表明,如果初始条件$ U_0 $取自具有指定协方差的一系列平滑高斯字段,则$ u $具有很高的可能性。结果的结果是,没有Banach的分布空间,可以在3D圆环上带有高斯自由场,并且deTurck-yang-mills热流量连续延伸到此,这对arXiv的最新拟合良好导致了ARXIV:2111.10652和ARXIV:2201.03487。另一个结果是(确定性的)非线性热方程式表现出规范通胀,因此在besov空间中的每个点$ b^{ - 1/2} _ {\ infty,\ infty} $;空间$ b^{ - 1/2} _ {\ infty,\ infty} $是一个端点,因为该方程对于$ b^η_ {\ infty,\ infty,\ infty} $的局部良好,对于每个$η> - \ frac12 $。

We consider a non-linear heat equation $\partial_t u = Δu + B(u,Du)+P(u)$ posed on the $d$-dimensional torus, where $P$ is a polynomial of degree at most $3$ and $B$ is a bilinear map that is not a total derivative. We show that, if the initial condition $u_0$ is taken from a sequence of smooth Gaussian fields with a specified covariance, then $u$ exhibits norm inflation with high probability. A consequence of this result is that there exists no Banach space of distributions which carries the Gaussian free field on the 3D torus and to which the DeTurck-Yang-Mills heat flow extends continuously, which complements recent well-posedness results in arXiv:2111.10652 and arXiv:2201.03487. Another consequence is that the (deterministic) non-linear heat equation exhibits norm inflation, and is thus locally ill-posed, at every point in the Besov space $B^{-1/2}_{\infty,\infty}$; the space $B^{-1/2}_{\infty,\infty}$ is an endpoint since the equation is locally well-posed for $B^η_{\infty,\infty}$ for every $η>-\frac12$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源