论文标题

Lyapunov指数之间的差异,用于简单的随机步行伯努利电位的差异

Differences between Lyapunov exponents for the simple random walk in Bernoulli potentials

论文作者

Kubota, Naoki

论文摘要

我们考虑在$ d $ d $维晶格$ \ mathbb {z}^d $($ d \ geq 1 $)上的简单随机步行,并以伯努利分布的潜力行驶。所谓的Lyapunov指数描述了潜在的简单随机步行的行进成本,众所周知,Lyapunov指数严格在Bernoulli分布的参数中是单调的。因此,本文的目的是更准确地研究电势对Lyapunov指数的影响,我们得出了一些Lipschitz型估计值,以估计Lyapunov指数之间的差异。

We consider the simple random walk on the $d$-dimensional lattice $\mathbb{Z}^d$ ($d \geq 1$), traveling in potentials which are Bernoulli distributed. The so-called Lyapunov exponent describes the cost of traveling for the simple random walk in the potential, and it is known that the Lyapunov exponent is strictly monotone in the parameter of the Bernoulli distribution. Hence, the aim of this paper is to investigate the effect of the potential on the Lyapunov exponent more precisely, and we derive some Lipschitz-type estimates for the difference between the Lyapunov exponents.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源