论文标题
使用手机大数据来表征旅游每日旅行连锁店
Characterizing Tourist Daily Trip Chains Using Mobile Phone Big Data
论文作者
论文摘要
游客倾向于从旅行中寻求各种各样的动机来参观多个目的地。因此,发现旅游研究中涉及多污染的旅行模式至关重要。现有的相关研究最依赖于调查数据,或者由于缺乏大规模,细粒度的旅游数据集而着重于公民。几位学者提到了行程链的概念,但是很少有作品用于定量识别行程链的结构。在本文中,我们提出了一个模型,用于定量表征旅游日常旅行连锁店。将这种型号应用于旅游手机大数据后,发现了基本的旅行模式。通过整个框架,我们发现:(1)大多数“混合”(城市间和城市内)和“城市内”(只有城市内)模式只能通过相对13个关键的跳闸链捕获; (2)连续两天,几乎所有类型的原始链具有很高的可能性,可以转移到前两个转移的链条或我们研究区域中其他不经常的链条; (3)最少努力(PLE)的原则影响了游客的跳闸结构。我们可以使用平均程度和平均旅行距离来解释旅游行为(在PLE中完成任务)。这项研究不仅证明了旅游大数据的复杂日常旅行链,而且还通过发现基于移动数据集的重要和潜在的模式来填补有关多目的地旅行的旅游文献的空白。
Tourists tend to visit multiple destinations out of their variety-seeking motivations in their trips. Thus, it is critical to discover travel patterns involving multi-destinations in tourism research. Existing relevant research most relied on survey data or focused on citizens due to the lack of large-scale, fine-grained tourism datasets. Several scholars have mentioned the notion of trip chains, but few works have been done towards quantitatively identifying the structures of trip chains. In this paper, we propose a model for quantitatively characterizing tourist daily trip chains. After applying this model to tourist mobile phone big data, underlying tourist travel patterns are discovered. Through the framework, we find that: (1) Most "hybrid" (inter-city and intra-city) and "intra-city" (only intra-city) patterns can be captured by only 13 key trip chains relatively; (2) For two continuous days, almost all kinds of original chains have a rather high probability to transfer to either the first two transferred chains, or other infrequent chains in our study areas; (3) The principle of least efforts (PLE) affects tourists' structures of trip chains. We can use average degree and average travel distance to interpret tourist travel behavior (achieving tasks in PLE). This study not only demonstrate the complex daily travel trip chains from tourism big data, but also fill the gap in tourism literature on multi-destination trips by discovering significant and underlying patterns based on mobile datasets.