论文标题
共同发展网络中极化的出现
Emergence of polarization in coevolving networks
论文作者
论文摘要
极化是社会系统中普遍存在的现象。经验研究记录了在社交媒体之间进行两极分化的大量证据,显示了一种典型的双极模式,使个人分为两组具有相反的意见。尽管已经提出了协调网络模型来了解极化,但现有作品无法产生稳定的双极结构。此外,一个定量且全面的理论框架捕获了对极化的通用机制,仍然没有解决。在本文中,我们发现了一项针对意见分布的普遍缩放定律,其特征是一组缩放指数。这些指数将社会系统分类为双极化和去极化阶段。我们找到了两个统治极化动力学的通用机制,并提出了一个共同发展的框架,该框架同时考虑了意见动力学和网络进化。在一些关于社会互动的通用假设下,我们发现稳定的双极社区结构自然而然地从共同发展的动态中出现。我们的理论通过分析性地预测,与Facebook和Blogophere数据集的经验观察相一致,可以预测三个不同的极化阶段的两阶段过渡。我们的理论不仅说明了经验观察到的缩放定律,而且还使我们能够定量预测缩放指数。
Polarization is a ubiquitous phenomenon in social systems. Empirical studies document substantial evidence for opinion polarization across social media, showing a typical bipolarized pattern devising individuals into two groups with opposite opinions. While coevolving network models have been proposed to understand polarization, existing works cannot generate a stable bipolarized structure. Moreover, a quantitative and comprehensive theoretical framework capturing generic mechanisms governing polarization remains unaddressed. In this paper, we discover a universal scaling law for opinion distributions, characterized by a set of scaling exponents. These exponents classify social systems into bipolarized and depolarized phases. We find two generic mechanisms governing the polarization dynamics and propose a coevolving framework that counts for opinion dynamics and network evolution simultaneously. Under a few generic assumptions on social interactions, we find a stable bipolarized community structure emerges naturally from the coevolving dynamics. Our theory analytically predicts two-phase transitions across three different polarization phases in line with the empirical observations for the Facebook and blogosphere datasets. Our theory not only accounts for the empirically observed scaling laws but also allows us to predict scaling exponents quantitatively.