论文标题

仿射品种的自动形态何时线性?

When is the automorphism group of an affine variety linear?

论文作者

Regeta, Andriy

论文摘要

令$ aut_ {alg}(x)$是仿射代数品种$ x $的常规自动形态(x)$组的子组。我们证明,如果$ dim x \ ge 2 $,并且如果$ aut_ {alg}(x)$足够丰富,则$ aut_ {alg}(x)$不是线性的,即不能将其嵌入$ gl_n(k)$,其中$ k $是特征性零的代数封闭的字段。此外,$ AUT(X)$仅当$ AUT(X)$的连接组件是代数曲线或通勤单位群体的直接限制时,仅作为一个抽象组作为抽象组是同构。最后,我们证明,对于$ x $的无数$ k $,如果$ x $具有正维线性代数组的合理动作,则$ x $的偶然转型对仿射品种的自动形态不可能是同构。

Let $Aut_{alg}(X)$ be the subgroup of the group of regular automorphisms $Aut(X)$ of an affine algebraic variety $X$ generated by all connected algebraic subgroups. We prove that if $dim X \ge 2$ and if $Aut_{alg}(X)$ is rich enough, $Aut_{alg}(X)$ is not linear, i.e., it cannot be embedded into $GL_n(K)$, where $K$ is an algebraically closed field of characteristic zero. Moreover, $Aut(X)$ is isomorphic to an algebraic group as an abstract group only if the connected component of $Aut(X)$ is either the algebraic torus or a direct limit of commutative unipotent groups. Finally, we prove that for an uncountable $K$ the group of birational transformations of $X$ cannot be isomorphic to the group of automorphisms of an affine variety if $X$ is endowed with a rational action of a positive-dimensional linear algebraic group.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源