论文标题
通过机器学习来表征量子伪随身
Characterizing quantum pseudorandomness by machine learning
论文作者
论文摘要
孤立量子系统中的随机动力学在量子信息中是实际使用的,并且在基本物理学中具有理论上的兴趣。尽管有大量的理论研究,但尚未解决如何从实验数据中验证随机动力学。在本文中,基于随机动力学的信息理论公式,即单一$ t $ - 设计,我们提出了一种从数据中验证随机动力学的方法,该方法在实验上易于访问。更具体地说,我们使用由给定随机动力学产生的量子状态的有限测量值估计的测量概率。基于一种监督的学习方法,我们构建了随机动力学的分类器,并表明分类器成功地表征了随机动力学。然后,我们将分类器应用于由局部随机电路(LRC)生成的数据集,这些数据集是具有不断增长的电路复杂性的规范量子电路,并表明分类器成功地表征了增长的特征。我们进一步将分类器应用于嘈杂的LRC,表明使用它们来验证嘈杂的量子设备并监视LRC,表明测量引起的相变可能与随机性直接相关。
Random dynamics in isolated quantum systems is of practical use in quantum information and is of theoretical interest in fundamental physics. Despite a large number of theoretical studies, it has not been addressed how random dynamics can be verified from experimental data. In this paper, based on an information-theoretic formulation of random dynamics, i.e., unitary $t$-designs, we propose a method for verifying random dynamics from the data that is experimentally easy-to-access. More specifically, we use measurement probabilities estimated by a finite number of measurements of quantum states generated by a given random dynamics. Based on a supervised learning method, we construct classifiers of random dynamics and show that the classifiers succeed to characterize random dynamics. We then apply the classifiers to the data set generated by local random circuits (LRCs), which are canonical quantum circuits with growing circuit complexity, and show that the classifiers successfully characterize the growing features. We further apply the classifiers to noisy LRCs, showing the possibility of using them for verifying noisy quantum devices, and to monitored LRCs, indicating that the measurement-induced phase transition may possibly not be directly related to randomness.