论文标题

注意码:短包通信的超可靠反馈代码

AttentionCode: Ultra-Reliable Feedback Codes for Short-Packet Communications

论文作者

Shao, Yulin, Ozfatura, Emre, Perotti, Alberto, Popovic, Branislav, Gunduz, Deniz

论文摘要

超可靠的短包通信是具有关键应用程序的未来无线网络的主要挑战。为了实现超过99.999%的超高通信,本文设想了一种基于相互作用的新通信范式,从而利用了接收器的反馈。我们提出了注意码,这是一类新的反馈代码,利用深度学习(DL)技术。注意码的基础是三个建筑创新:注意网络,投入重组和适应褪色渠道,并伴随着几种培训方法,包括大批量培训,分布式学习,预测优化器,训练测试测试的信号 - 噪声 - 噪声比率(SNR)的比例(SNR)次数(SNR)MISCATCH和课程学习。通过机器学习,培训方法可能会推广到其他无线通信应用程序。数值实验验证了注意码在加性白色高斯噪声(AWGN)通道和褪色通道中的所有基于DL的反馈代码之间建立了新的最新技术状态。例如,在带有无噪声反馈的AWGN通道中,注意码达到了$ 10^{ - 7} $ $ 10^{ - 7} $的块错误率(BLER),当远期通道SNR为0 dB,块大小为50位,这表明了注意码提供超可靠的短包通信的潜力。

Ultra-reliable short-packet communication is a major challenge in future wireless networks with critical applications. To achieve ultra-reliable communications beyond 99.999%, this paper envisions a new interaction-based communication paradigm that exploits feedback from the receiver. We present AttentionCode, a new class of feedback codes leveraging deep learning (DL) technologies. The underpinnings of AttentionCode are three architectural innovations: AttentionNet, input restructuring, and adaptation to fading channels, accompanied by several training methods, including large-batch training, distributed learning, look-ahead optimizer, training-test signal-to-noise ratio (SNR) mismatch, and curriculum learning. The training methods can potentially be generalized to other wireless communication applications with machine learning. Numerical experiments verify that AttentionCode establishes a new state of the art among all DL-based feedback codes in both additive white Gaussian noise (AWGN) channels and fading channels. In AWGN channels with noiseless feedback, for example, AttentionCode achieves a block error rate (BLER) of $10^{-7}$ when the forward channel SNR is 0 dB for a block size of 50 bits, demonstrating the potential of AttentionCode to provide ultra-reliable short-packet communications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源