论文标题

部分可观测时空混沌系统的无模型预测

Computation of q-Binomial Coefficients with the $P(n,m)$ Integer Partition Function

论文作者

Kronenburg, M. J.

论文摘要

使用$ p(n,m)$,$ n $的整数分区数量恰好是$ m $零件,这是较早的论文的主题,$ p(n,m,p)$,$ n $ $ n $的数量$ n $的数量$ n $零件,每个零件最多$ p $,都可以计算为$ o(n^2)$ o(n^2)$ o(n^$ o o(n^of)$ o o(quffice of of o(n^of)。使用Q-binomial系数的定义,得出了Q-binomial系数的某些属性和$ p(n,m,p)$的某些属性。 Q-多性系数可以计算为Q-二项式系数的乘积。 $ q(n,m,p)$的公式,$ n $的整数分区的数量恰好是$ m $不同的零件,每个零件最多$ p $。一些用于整数分区数量的公式,每个部分在最小值和最大值之间。使用早期论文的计算机代数程序列出了计算机代数程序,以实现这些算法。

Using $P(n,m)$, the number of integer partitions of $n$ into exactly $m$ parts, which was the subject of an earlier paper, $P(n,m,p)$, the number of integer partitions of $n$ into exactly $m$ parts with each part at most $p$, can be computed in $O(n^2)$, and the q-binomial coefficient can be computed in $O(n^3)$. Using the definition of the q-binomial coefficient, some properties of the q-binomial coefficient and $P(n,m,p)$ are derived. The q-multinomial coefficient can be computed as a product of q-binomial coefficients. A formula for $Q(n,m,p)$, the number of integer partitions of $n$ into exactly $m$ distinct parts with each part at most $p$, is given. Some formulas for the number of integer partitions with each part between a minimum and a maximum are derived. A computer algebra program is listed implementing these algorithms using the computer algebra program of the earlier paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源