论文标题
Cauchy-Schwartz函数的热带二次形式的射线空间的分层
Stratifications of the ray space of a tropical quadratic form by Cauchy-Schwartz functions
论文作者
论文摘要
模块V上的等效性关系的类别的类别在上游热带半段(称为射线)携带“超热性三角学”的底层结构,从而具有与准线性兼容的凸几何形状的版本。在这个理论中,传统的凯奇·史克瓦兹(Cauchy-Schwarz)的不平等被CS-RATIO取代,CS-Ratio产生了特殊的特征功能,称为CS功能。这些功能部分将射线空间光线(V)放入凸组集合中,并建立了一个主要工具,用于分析射线(V)中的准线性恒星的品种。它们提供了射线(V)的分层,因此提供了更精细的凸分析,有助于更好地理解几何学。
Classes of an equivalence relation on a module V over a supertropical semiring, called rays, carry the underlaying structure of "supertropical trigonometry" and thereby a version of convex geometry which is compatible with quasilinearity. In this theory the traditional Cauchy-Schwarz inequality is replaced by the CS-ratio which gives rise to special characteristic functions, called CS-functions. These functions partite the ray space Ray(V) into convex sets and establish a main tool for analyzing varieties of quasilinear stars in Ray(V). They provide stratifications of Ray(V) and therefore a finer convex analysis that helps for a better geometric understanding.