论文标题

Berezinskii-Kosterlitz的研究 - 无用的过渡:无监督的机器学习方法

Study of the Berezinskii-Kosterlitz-Thouless transition: An unsupervised machine learning approach

论文作者

Haldar, Sumit, Rahaman, Sk Saniur, Kumar, Manoranjan

论文摘要

磁系统中的Berezinskii-Kosterlitz-thouless(BKT)过渡是一种有趣的现象,对BKT过渡温度的准确估计是一个长期存在的问题。在这项工作中,我们使用无监督的机器学习方法称为主要成分分析(PCA),在三角形晶格上探索了各向异性经典海森堡XY和XXZ模型,并在三角形晶格上具有铁磁交换和抗磁磁交换。在早期对BKT过渡的研究中,使用Monte Carlo方法计算出的自旋构型和涡度用于确定过渡温度$ T_ {BKT} $,但是这些方法无法通过分析PCA方法中的主要成分来给出任何结论性结果。在这项工作中,涡度用作对PCA的初始输入,并且具有温度的第一个主组件的曲线具有函数,以确定$ t_ {bkt} $的准确值。该过程适用于各向异性的经典海森堡,并在方形晶格上具有铁磁交换以及三角形晶格上的沮丧的反铁磁交换。三角形晶格上的经典各向异性海森伯格抗铁磁模型具有两个紧密的过渡。 bkt at $ t_ {bkt} $,像手性的相变一样,$ t_c $,很难将这些过渡点分开。还注意到,使用PCA方法并操纵其第一个主要成分,不仅可以确定过渡点的分离,而且可以准确确定过渡温度。

The Berezinskii-Kosterlitz-Thouless (BKT) transition in magnetic system is an intriguing phenomena and an accurate estimation of the BKT transition temperature has been a long-standing problem. In this work we explore the anisotropic classical Heisenberg XY and XXZ models with ferromagnetic exchange on a square lattice and antiferromagnetic exchange on a triangular lattice using an unsupervised machine learning approach called principal component analysis (PCA). In earlier studies of the BKT transition, spin configurations and vorticities calculated from Monte Carlo method are used to determine the transition temperature $T_{BKT}$, but those methods fail to give any conclusive results by analyzing the principal components in the PCA approach. In this work vorticities are used as initial input to the PCA and curve of the first principal component with temperature is fitted with a function to determine an accurate value of $T_{BKT}$. This procedure works well for anisotropic classical Heisenberg with ferromagnetic exchange on square lattice as well as for frustrated antiferromagnetic exchange on a triangular lattice. The classical anisotropic Heisenberg antiferromagnetic model on the triangular lattice has two close transitions; the BKT at $T_{BKT}$ and Ising like phase transition for chirality at $T_c$ and it is difficult to separate these transition points. It is also noted that using the PCA method and manipulation of their first principal component, not only separation of transition points are possible but also transition temperature can be determined accurately.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源