论文标题

GraphWalks:有效形状不可知的大地测量最短路径估计

GraphWalks: Efficient Shape Agnostic Geodesic Shortest Path Estimation

论文作者

Potamias, Rolandos Alexandros, Neofytou, Alexandros, Bintsi, Kyriaki-Margarita, Zafeiriou, Stefanos

论文摘要

地球路径和距离是3D表面最流行的内在特性之一。传统上,使用最短的路径算法(例如Dijkstra)计算离散多边形表面上的地球途径。但是,这种算法有两个主要局限性。它们是不可差异的,它限制了他们在可学习的管道中的直接用法,并且需要花费大量时间。为了解决此类局限性并减轻计算负担,我们提出了一个可学习的网络,以近似地球途径。所提出的方法由三个主要组成部分组成:一个编码高维空间中节点位置的图形神经网络,一个嵌入的路径嵌入,描述了先前访问的节点和一个点分类器,可以选择路径中的下一个点。所提出的方法提供了最短路径和地球距离估计的有效近似值。鉴于我们方法的所有组件都是完全可分解的,因此可以将其直接插入任何可学习的管道中,并在任何可区分的约束下进行自定义。我们通过几个定性和定量实验广泛评估所提出的方法。

Geodesic paths and distances are among the most popular intrinsic properties of 3D surfaces. Traditionally, geodesic paths on discrete polygon surfaces were computed using shortest path algorithms, such as Dijkstra. However, such algorithms have two major limitations. They are non-differentiable which limits their direct usage in learnable pipelines and they are considerably time demanding. To address such limitations and alleviate the computational burden, we propose a learnable network to approximate geodesic paths. The proposed method is comprised by three major components: a graph neural network that encodes node positions in a high dimensional space, a path embedding that describes previously visited nodes and a point classifier that selects the next point in the path. The proposed method provides efficient approximations of the shortest paths and geodesic distances estimations. Given that all of the components of our method are fully differentiable, it can be directly plugged into any learnable pipeline as well as customized under any differentiable constraint. We extensively evaluate the proposed method with several qualitative and quantitative experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源