论文标题

通过特征向量扰动监视的配置文件监视

Profile Monitoring via Eigenvector Perturbation

论文作者

Iguchi, Takayuki, Barrientos, Andrés F., Chicken, Eric, Sinha, Debajyoti

论文摘要

在统计过程控制中,控制图通常用于检测依次观察到的质量特征的不良行为。设计具有较低误报率(FAR)和检测延迟($ arl_1 $)的控制图表是一个重要的挑战,尤其是当采样率较高并且控制图具有控制图中的平均值,称为$ arl_0 $,称为$ arl_0 $ 200,为200或更多,通常是在实践中发现的。不幸的是,任意减少通常会增加$ arl_1 $。在特征向量扰动理论的启发下,我们提出了计算快速非参数概况监测的特征向量扰动控制图。我们的仿真研究表明,它表现优于竞争,并实现$ arl_1 \大约1 $和$ arl_0> 10^6 $。

In Statistical Process Control, control charts are often used to detect undesirable behavior of sequentially observed quality characteristics. Designing a control chart with desirably low False Alarm Rate (FAR) and detection delay ($ARL_1$) is an important challenge especially when the sampling rate is high and the control chart has an In-Control Average Run Length, called $ARL_0$, of 200 or more, as commonly found in practice. Unfortunately, arbitrary reduction of the FAR typically increases the $ARL_1$. Motivated by eigenvector perturbation theory, we propose the Eigenvector Perturbation Control Chart for computationally fast nonparametric profile monitoring. Our simulation studies show that it outperforms the competition and achieves both $ARL_1 \approx 1$ and $ARL_0 > 10^6$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源