论文标题

低资源自然语言推断的多层监督对比学习框架

A Multi-level Supervised Contrastive Learning Framework for Low-Resource Natural Language Inference

论文作者

Li, Shu'ang, Hu, Xuming, Lin, Li, Liu, Aiwei, Wen, Lijie, Yu, Philip S.

论文摘要

自然语言推论(NLI)是自然语言理解中一项重要的重要任务,这需要推断句子对之间的关​​系(前提和假设)。最近,由于手动注释成本的大量节省,并且与现实世界中的情况更好,因此低资源的自然推理引起了人们的关注。现有作品无法表征不同类别的不同类别的歧视性表示,而培训数据可能会导致标签预测中的故障。在这里,我们提出了一个多层次监督的对比学习框架,名为MultiSCL,用于低资源自然语言推断。 MultiSCL利用一个句子级别和成对的对比学习目标,通过将一个班级的人聚集在一起并将不同类别的人推开,以区分不同类别的句子对。 MultiSCL采用数据增强模块,该模块为输入样本生成不同的视图,以更好地学习潜在表示。配对级表示是从交叉注意模块获得的。我们在低资源环境中对两个公共NLI数据集进行了广泛的实验,而MultiSCL的准确性平均超过了其他模型3.1%。此外,我们的方法在文本分类的跨域任务上优于先前的最新方法。

Natural Language Inference (NLI) is a growingly essential task in natural language understanding, which requires inferring the relationship between the sentence pairs (premise and hypothesis). Recently, low-resource natural language inference has gained increasing attention, due to significant savings in manual annotation costs and a better fit with real-world scenarios. Existing works fail to characterize discriminative representations between different classes with limited training data, which may cause faults in label prediction. Here we propose a multi-level supervised contrastive learning framework named MultiSCL for low-resource natural language inference. MultiSCL leverages a sentence-level and pair-level contrastive learning objective to discriminate between different classes of sentence pairs by bringing those in one class together and pushing away those in different classes. MultiSCL adopts a data augmentation module that generates different views for input samples to better learn the latent representation. The pair-level representation is obtained from a cross attention module. We conduct extensive experiments on two public NLI datasets in low-resource settings, and the accuracy of MultiSCL exceeds other models by 3.1% on average. Moreover, our method outperforms the previous state-of-the-art method on cross-domain tasks of text classification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源