论文标题
通过两彩强飞秒激光脉冲诱导的硅的能量沉积和载体产生
Enhanced energy deposition and carrier generation in silicon induced by two-color intense femtosecond laser pulses
论文作者
论文摘要
从理论上讲,我们使用时间依赖性密度功能理论(TDDFT)研究了由双色飞秒激光脉冲的结晶硅的光学吸收。我们采用了修改后的BECKE-JOHNSON(MBJ)交换相关潜力,该电位再现了实验性直接带隙Energy $ E_G $。我们考虑在$ e_g $以上的紫外线(UV)范围内的一种颜色的情况,而另一种则在其下方的红外(IR)范围内。能量沉积是根据保存总脉冲能的两种颜色的混合比$η$的函数。通过同时进行双色辐照,从激光脉冲到硅中的电子系统的能量转移显着增强,并以$η\ sim 0.5 $最大化。增加的是生成的载体数量,而不是每个载体吸收能量的数量。该效果对于较低的IR光子能或等效地,较大的矢量电位振幅更有效。由于基本机制被鉴定出由IR成分和谐振到反向导致的带相激发(载体注入)驱动的{\ it Valence}频段(激发前)中的映射电子运动之间的相互作用。前者增加了通过$ k $ resonant转换点的兴奋性电子。在传导带中产生的不同多光子吸收路径或载体内运动的影响扮演较小的作用。
We theoretically investigate the optical energy absorption of crystalline silicon subject to dual-color femtosecond laser pulses, using the time-dependent density functional theory (TDDFT). We employ the modified Becke-Johnson (mBJ) exchange-correlation potential which reproduces the experimental direct bandgap energy $E_g$. We consider situations where the one color is in the ultraviolet (UV) range above $E_g$ and the other in the infrared (IR) range below it. The energy deposition is examined as a function of mixing ratio $η$ of the two colors with the total pulse energy conserved. Energy transfer from the laser pulse to the electronic system in silicon is dramatically enhanced by simultaneous dual-color irradiation and maximized at $η\sim 0.5$. Increased is the number of generated carriers, not the absorbed energy per carrier. The effect is more efficient for lower IR photon energy, or equivalently, larger vector-potential amplitude. As the underlying mechanism is identified the interplay between intraband electron motion in the {\it valence} band (before excitation) driven by the IR component and resonant valence-to-conduction interband excitation (carrier injection) induced by the UV component. The former increases excitable electrons which pass through the $k$ points of resonant transitions. The effect of different multiphoton absorption paths or intraband motion of carriers generated in the conduction band play a minor role.