论文标题
针对精确运动系统的数据驱动参考轨迹优化
Data-driven Reference Trajectory Optimization for Precision Motion Systems
论文作者
论文摘要
我们提出了一种基于数据驱动的优化的预补偿方法,通过修改参考轨迹而不修改任何内置的低级控制器,通过修改参考轨迹来提高精度运动阶段的轮廓跟踪性能。精确运动阶段的位置是通过数据驱动的模型预测的,线性低效率模型用于通过更改路径速度和加速度曲线来优化遍历时间,然后使用非线性高效率模型来完善先前发现的时间优势解决方案。我们通过实验表明,所提出的方法能够同时提高高精度运动阶段的生产率和准确性。鉴于模型的基于数据的性质,提出的方法可以很容易地适应广泛的精确运动系统。
We propose a data-driven optimization-based pre-compensation method to improve the contour tracking performance of precision motion stages by modifying the reference trajectory and without modifying any built-in low-level controllers. The position of the precision motion stage is predicted with data-driven models, a linear low-fidelity model is used to optimize traversal time, by changing the path velocity and acceleration profiles then a non-linear high-fidelity model is used to refine the previously found time-optimal solution. We experimentally demonstrate that the proposed method is capable of simultaneously improving the productivity and accuracy of a high precision motion stage. Given the data-based nature of the models, the proposed method can easily be adapted to a wide family of precision motion systems.