论文标题

Faircop:使用对比性个性化的面部图像检索

FaIRCoP: Facial Image Retrieval using Contrastive Personalization

论文作者

Gupta, Devansh, Saini, Aditya, Bhasin, Drishti, Bhagat, Sarthak, Uppal, Shagun, Jain, Rishi Raj, Kumaraguru, Ponnurangam, Shah, Rajiv Ratn

论文摘要

从属性中检索面部图像在各种系统(例如面部识别和可疑识别)中起着至关重要的作用。与其他图像检索任务相比,由于描述了一个人的面部特征所涉及的高主观性,面部图像检索更具挑战性。现有方法通过将用户心理图像的特定特征与通过高级监督(例如使用自然语言)进行比较。相比之下,我们提出了一种使用相对简单的二进制监督形式的方法,它利用用户的反馈将图像标记为与目标图像相似或不同的方法。这种监督使我们能够利用对比度学习范式来封装每个用户的个性化相似性概念。为此,我们提出了通过用户反馈在线优化的新型损失函数。我们使用精心设计的测试台模拟用户反馈和大规模用户研究来验证我们提出的方法的功效。我们的实验表明,我们的方法迭代改善了个性化,从而导致更快的融合并增强了建议相关性,从而提高了用户满意度。我们提出的框架还配备了一个用户友好的Web界面,并具有实时体验以进行面部图像检索。

Retrieving facial images from attributes plays a vital role in various systems such as face recognition and suspect identification. Compared to other image retrieval tasks, facial image retrieval is more challenging due to the high subjectivity involved in describing a person's facial features. Existing methods do so by comparing specific characteristics from the user's mental image against the suggested images via high-level supervision such as using natural language. In contrast, we propose a method that uses a relatively simpler form of binary supervision by utilizing the user's feedback to label images as either similar or dissimilar to the target image. Such supervision enables us to exploit the contrastive learning paradigm for encapsulating each user's personalized notion of similarity. For this, we propose a novel loss function optimized online via user feedback. We validate the efficacy of our proposed approach using a carefully designed testbed to simulate user feedback and a large-scale user study. Our experiments demonstrate that our method iteratively improves personalization, leading to faster convergence and enhanced recommendation relevance, thereby, improving user satisfaction. Our proposed framework is also equipped with a user-friendly web interface with a real-time experience for facial image retrieval.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源