论文标题
线性随机热力学
Linear Stochastic Thermodynamics
论文作者
论文摘要
我们使用随机热力学的线性状态研究了通过非保守和时间依赖性力弱驱动的开放系统的热力学。我们利用保护法来确定部队的潜力和非保守构成。这使我们能够制定统一的近平衡热力学。对于非平衡稳态,我们获得了一个Onsager理论,以确保与现象学线性不可逆转的热力学一致的非发音响应矩阵。对于不产生非保守力的时间依赖性的驾驶方案,我们确定了从中恢复绿色kubo关系的平衡集合。对于任意周期性的驱动器,平均熵产生(EP)表示为无负贡献的每个驾驶频率的独立总和。这些贡献在非保守和保守的力量中是双线性的,并且涉及一种对称的新型onsager矩阵。在最普遍的任意时间依赖性驱动器的情况下,我们将EP速率的新颖分解成两个非负贡献 - 一种仅是由于非保守力,而另一个仅仅是由于瞬时稳态偏离 - 直接暗示最小熵产生原理接近平衡。这种设置揭示了近平衡热力学的几何结构,并将其概括为非保守力病例的先前方法。
We study the thermodynamics of open systems weakly driven out-of-equilibrium by nonconservative and time-dependent forces using the linear regime of stochastic thermodynamics. We make use of conservation laws to identify the potential and nonconservative components of the forces. This allows us to formulate a unified near-equilibrium thermodynamics. For nonequilibrium steady states, we obtain an Onsager theory ensuring nonsingular response matrices that is consistent with phenomenological linear irreversible thermodynamics. For time-dependent driving protocols that do not produce nonconservative forces, we identify the equilibrium ensemble from which Green-Kubo relations are recovered. For arbitrary periodic drivings, the averaged entropy production (EP) is expressed as an independent sum over each driving frequency of non-negative contributions. These contributions are bilinear in the nonconservative and conservative forces and involve a novel generalized Onsager matrix that is symmetric. In the most general case of arbitrary time-dependent drivings, we advance a novel decomposition of the EP rate into two non-negative contributions - one solely due to nonconservative forces and the other solely due to deviation from the instantaneous steady-state - directly implying a minimum entropy production principle close to equilibrium. This setting reveals the geometric structure of near-equilibrium thermodynamics and generalizes previous approaches to cases with nonconservative forces.