论文标题

VFED-SSD:迈向实用的垂直联合广告

VFed-SSD: Towards Practical Vertical Federated Advertising

论文作者

Li, Wenjie, Xia, Qiaolin, Deng, Junfeng, Cheng, Hao, Liu, Jiangming, Xue, Kouying, Cheng, Yong, Xia, Shu-Tao

论文摘要

作为杠杆跨机构私人数据中新兴的安全学习范式,垂直联合学习(VFL)有望通过启用广告商和发布者私人拥有的互补用户属性的联合学习来改善广告模型。但是,将其应用于广告系统有两个关键的挑战:a)标记的重叠样本规模有限,b)实时跨机构服务的高成本。在本文中,我们提出了一个半监督的拆卸框架VFED-SSD,以减轻这两个限制。我们确定:i)广告系统中有大量未标记的重叠数据,ii)我们可以通过分解联合模型来保持模型性能和推理成本之间的平衡。具体而言,我们开发了一个自制的任务匹配pair检测(MPD),以利用垂直分区的未标记数据并提出拆分知识蒸馏(SplitKD)架构以避免使用跨机构服务。对三个工业数据集的实证研究表现出了我们的方法的有效性,在本地和联合部署模式下,所有数据集的中位数AUC分别提高了0.86%和2.6%。总体而言,我们的框架为实时展示广告提供了一种有效的联邦增强解决方案,其部署成本和大量绩效提高。

As an emerging secure learning paradigm in lever-aging cross-agency private data, vertical federatedlearning (VFL) is expected to improve advertising models by enabling the joint learning of complementary user attributes privately owned by the advertiser and the publisher. However, there are two key challenges in applying it to advertising systems: a) the limited scale of labeled overlapping samples, and b) the high cost of real-time cross-agency serving. In this paper, we propose a semi-supervised split distillation framework VFed-SSD to alleviate the two limitations. We identify that: i)there are massive unlabeled overlapped data available in advertising systems, and ii) we can keep a balance between model performance and inference cost by decomposing the federated model. Specifically, we develop a self-supervised task MatchedPair Detection (MPD) to exploit the vertically partitioned unlabeled data and propose the Split Knowledge Distillation (SplitKD) schema to avoid cross-agency serving. Empirical studies on three industrial datasets exhibit the effectiveness of ourmethods, with the median AUC over all datasets improved by 0.86% and 2.6% in the local andthe federated deployment mode respectively. Overall, our framework provides an efficient federation-enhanced solution for real-time display advertising with minimal deploying cost and significant performance lift.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源