论文标题

决定因素的公式

A Formula for the Determinant

论文作者

Pippenger, Nicholas

论文摘要

我们为$ n \ times n $矩阵的决定因素提供了一个公式,并带有带有单位的通勤环的条目。该公式可以通过“直线程序”进行评估,仅执行添加,减法和环元素的乘法;特别是它不需要分区或有条件的分支(例如,如高斯消除所要求的)。执行的操作数量由$ n $,特别是$ o(n^4 \ log n)$的固定功率界定。此外,可以将操作分为“阶段”,以便在给定阶段的操作数是矩阵条目或较早阶段的操作结果,并且阶段的数量受$ n $的固定功率的限制,$ n $,尤其是$ o \ big o \ big(\ log n log n)^2 \ big big big big big big big big)

We give a formula for the determinant of an $n\times n$ matrix with entries from a commutative ring with unit. The formula can be evaluated by a "straight-line program" performing only additions, subtractions and multiplications of ring elements; in particular it requires no divisions or conditional branching (as are required, for example, by Gaussian elimination). The number of operations performed is bounded by a fixed power of $n$, specifically $O(n^4\log n)$. Furthermore, the operations can be partitioned into "stages" in such a way that the operands of the operations in a given stage are either matrix entries or the results of operations in earlier stages, and the number of stages is bounded by a fixed power of the logarithm of $n$, specifically $O\big((\log n)^2\big)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源