论文标题
动手:利用合成数据进行手柄检测
Hands-Up: Leveraging Synthetic Data for Hands-On-Wheel Detection
论文作者
论文摘要
在过去的几年中,使用基于仿真的技术在合成数据生成领域取得了重大进展。这些方法使用高端图形引擎和基于物理的射线追踪渲染,以在3D中代表世界并创建高度逼真的图像。 Datagen专门研究了高质量的3D人类,现实的3D环境和现实的人类运动的产生。该技术已发展为我们用于这些实验的数据生成平台。这项工作证明了使用合成光真实的卡宾内数据来训练使用轻量级神经网络检测驾驶员的手是否在方向盘上的驱动器监测系统。我们证明,只有少量的真实数据可用,合成数据可能是提高性能的简单方法。此外,我们采用了以数据为中心的方法,并展示了如何执行错误分析并在平台中生成缺失的边缘箱提高性能。这展示了以人为中心的综合数据能够很好地推广到现实世界的能力,并有助于在计算机视觉设置中训练算法,在计算机视觉设置中,来自目标域的数据很少或很难收集。
Over the past few years there has been major progress in the field of synthetic data generation using simulation based techniques. These methods use high-end graphics engines and physics-based ray-tracing rendering in order to represent the world in 3D and create highly realistic images. Datagen has specialized in the generation of high-quality 3D humans, realistic 3D environments and generation of realistic human motion. This technology has been developed into a data generation platform which we used for these experiments. This work demonstrates the use of synthetic photo-realistic in-cabin data to train a Driver Monitoring System that uses a lightweight neural network to detect whether the driver's hands are on the wheel. We demonstrate that when only a small amount of real data is available, synthetic data can be a simple way to boost performance. Moreover, we adopt the data-centric approach and show how performing error analysis and generating the missing edge-cases in our platform boosts performance. This showcases the ability of human-centric synthetic data to generalize well to the real world, and help train algorithms in computer vision settings where data from the target domain is scarce or hard to collect.