论文标题
强烈增强对比度聚类
Strongly Augmented Contrastive Clustering
论文作者
论文摘要
由于其通过深层神经网络的共同表示学习和聚类的能力,近年来,深层聚类引起了人们的关注。在其最新发展中,对比度学习已成为一种有效的技术,可实质性地提高深度聚类的性能。但是,现有的基于学习的基于对比度的深度聚类算法主要集中在一些精心设计的增强上(通常具有有限的转换以保存结构),称为较弱的增强性,但不能超越弱化的增强,无法探索更大的增强机会的机会(带有更具攻击性的变换甚至更严重的扭曲甚至严重的扭曲)。在本文中,我们提出了一种被称为强烈增强的对比聚类(SACC)的端到端深群集方法,该方法将常规的两夸大视图范式扩展到多种视图,并共同利用强大而弱的增强,以增强深层聚类。特别是,我们利用具有三重共享权重的骨干网络,在这里,有强烈的增强视图和两个弱化的视图。根据骨架产生的表示形式,弱化的景观对和强力视图对同时被利用,以进行实例级对比度学习(通过实例投影仪)和群集级的对比度学习(通过群集投影仪)(通过群集投影仪),与骨架可以在纯净的纯净纯净的方式中共同优化。五个具有挑战性的图像数据集的实验结果表明,我们的SACC方法优于最先进的方法。该代码可在https://github.com/dengxiaozhi/sacc上找到。
Deep clustering has attracted increasing attention in recent years due to its capability of joint representation learning and clustering via deep neural networks. In its latest developments, the contrastive learning has emerged as an effective technique to substantially enhance the deep clustering performance. However, the existing contrastive learning based deep clustering algorithms mostly focus on some carefully-designed augmentations (often with limited transformations to preserve the structure), referred to as weak augmentations, but cannot go beyond the weak augmentations to explore the more opportunities in stronger augmentations (with more aggressive transformations or even severe distortions). In this paper, we present an end-to-end deep clustering approach termed Strongly Augmented Contrastive Clustering (SACC), which extends the conventional two-augmentation-view paradigm to multiple views and jointly leverages strong and weak augmentations for strengthened deep clustering. Particularly, we utilize a backbone network with triply-shared weights, where a strongly augmented view and two weakly augmented views are incorporated. Based on the representations produced by the backbone, the weak-weak view pair and the strong-weak view pairs are simultaneously exploited for the instance-level contrastive learning (via an instance projector) and the cluster-level contrastive learning (via a cluster projector), which, together with the backbone, can be jointly optimized in a purely unsupervised manner. Experimental results on five challenging image datasets have shown the superiority of our SACC approach over the state-of-the-art. The code is available at https://github.com/dengxiaozhi/SACC.