论文标题

相关随机过程的Fisher信息

Fisher information of correlated stochastic processes

论文作者

Radaelli, Marco, Landi, Gabriel T., Modi, Kavan, Binder, Felix C.

论文摘要

许多实际任务包括某种参数估计,即确定概率分布中编码的参数。通常,这种概率分布来自随机过程。对于具有时间相关的固定随机过程,构成其的随机变量是相同分布的,但不是独立的。例如,对于量子连续测量而言就是这种情况。在本文中,我们证明了有关记忆随机过程中编码的参数的估计的两个基本结果。首先,我们表明,对于具有有限马尔可夫订单的过程,Fisher信息始终是渐近线性在结果数量上是线性的,并取决于过程的马尔可夫订单的条件分布。其次,我们证明相关性不一定会提高计量学的精度。实际上,我们表明,与熵信息量不同,在存在相关性的情况下,关于联合渔民信息的子或超级依据,一般来说,没有什么可以说的。我们讨论过程中相关性的类型如何影响缩放。然后,我们将这些结果应用于自旋链上的温度法。

Many real-world tasks include some kind of parameter estimation, i.e., determination of a parameter encoded in a probability distribution. Often, such probability distributions arise from stochastic processes. For a stationary stochastic process with temporal correlations, the random variables that constitute it are identically distributed but not independent. This is the case, for instance, for quantum continuous measurements. In this paper we prove two fundamental results concerning the estimation of parameters encoded in a memoryful stochastic process. First, we show that for processes with finite Markov order, the Fisher information is always asymptotically linear in the number of outcomes, and determined by the conditional distribution of the process' Markov order. Second, we prove with suitable examples that correlations do not necessarily enhance the metrological precision. In fact, we show that unlike for entropic information quantities, in general nothing can be said about the sub- or super-additivity of the joint Fisher information, in the presence of correlations. We discuss how the type of correlations in the process affects the scaling. We then apply these results to the case of thermometry on a spin chain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源