论文标题

量子学计量学中拓扑界限的实验证明

Experimental demonstration of topological bounds in quantum metrology

论文作者

Yu, Min, Li, Xiangbei, Chu, Yaoming, Mera, Bruno, Ünal, F. Nur, Yang, Pengcheng, Liu, Yu, Goldman, Nathan, Cai, Jianming

论文摘要

通过量子渔民信息的基本概念,量子计量学与量子几何形状有着深入的联系。受拓扑问题进步的启发,最近有人提出,带结构的浆果曲率和Chern数量可以决定对计量特性的严格下限,从而建立拓扑与量子计量学之间的牢固联系。在这项工作中,我们通过执行最佳量子多参数估计并实现最佳的测量精度,对此类拓扑界限进行了首次实验验证。通过模拟Chern绝缘子的带状结构,我们通过实验确定拓扑相变的计量势,并在拓扑上非平凡的状态中证明了强大的增强。我们的工作打开了拓扑授权的计量应用程序的大门,对量子多体系统产生了潜在的影响。

Quantum metrology is deeply connected to quantum geometry, through the fundamental notion of quantum Fisher information. Inspired by advances in topological matter, it was recently suggested that the Berry curvature and Chern numbers of band structures can dictate strict lower bounds on metrological properties, hence establishing a strong connection between topology and quantum metrology. In this work, we provide a first experimental verification of such topological bounds, by performing optimal quantum multi-parameter estimation and achieving the best possible measurement precision. By emulating the band structure of a Chern insulator, we experimentally determine the metrological potential across a topological phase transition, and demonstrate strong enhancement in the topologically non-trivial regime. Our work opens the door to metrological applications empowered by topology, with potential implications for quantum many-body systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源