论文标题
Prebit-带有Twitter Finbert Embeddings的多模式模型,用于极端价格移动的比特币预测
PreBit -- A multimodal model with Twitter FinBERT embeddings for extreme price movement prediction of Bitcoin
论文作者
论文摘要
比特币以其不断增长的知名度,自起源以来就表现出极端的价格波动。与更传统的资产相比,这种波动性及其分散性的性质使比特币高度主观投机。在本文中,我们提出了一个多模型,用于预测极端价格波动。该模型将各种相关资产,技术指标以及Twitter内容视为输入。在一项深入研究中,我们探讨了公众关于比特币的社交媒体讨论是否具有极端价格变动的预测能力。从2015年到2021年收集了一个包含关键字“比特币”的5,000条推文的数据集。该数据集(称为Prebit)可在线提供。在混合模型中,我们使用句子级的芬伯特嵌入,并在金融词典上预估计,以捕获推文的完整内容,并以可理解的方式将其提供给该模型。通过将这些嵌入与卷积神经网络相结合,我们为重大市场运动建立了预测模型。最终的多模式合奏模型包括此NLP模型以及基于烛台数据,技术指标和相关资产价格的模型。在一项消融研究中,我们探讨了各个方式的贡献。最后,我们基于模型的预测,以不同的预测阈值提出并进行了交易策略,并表明它可以用来建立一种有利可图的交易策略,其风险降低了“持有”或移动平均策略。
Bitcoin, with its ever-growing popularity, has demonstrated extreme price volatility since its origin. This volatility, together with its decentralised nature, make Bitcoin highly subjective to speculative trading as compared to more traditional assets. In this paper, we propose a multimodal model for predicting extreme price fluctuations. This model takes as input a variety of correlated assets, technical indicators, as well as Twitter content. In an in-depth study, we explore whether social media discussions from the general public on Bitcoin have predictive power for extreme price movements. A dataset of 5,000 tweets per day containing the keyword `Bitcoin' was collected from 2015 to 2021. This dataset, called PreBit, is made available online. In our hybrid model, we use sentence-level FinBERT embeddings, pretrained on financial lexicons, so as to capture the full contents of the tweets and feed it to the model in an understandable way. By combining these embeddings with a Convolutional Neural Network, we built a predictive model for significant market movements. The final multimodal ensemble model includes this NLP model together with a model based on candlestick data, technical indicators and correlated asset prices. In an ablation study, we explore the contribution of the individual modalities. Finally, we propose and backtest a trading strategy based on the predictions of our models with varying prediction threshold and show that it can used to build a profitable trading strategy with a reduced risk over a `hold' or moving average strategy.