论文标题

H-EMD:分层地球移动的距离方法,例如分割

H-EMD: A Hierarchical Earth Mover's Distance Method for Instance Segmentation

论文作者

Liang, Peixian, Zhang, Yizhe, Ding, Yifan, Chen, Jianxu, Madukoma, Chinedu S., Weninger, Tim, Shrout, Joshua D., Chen, Danny Z.

论文摘要

基于深度学习(DL)的语义分割方法已在生物医学图像分割中实现了出色的性能,从而产生了高质量的概率图,以允许提取丰富的实例信息以促进良好的实例分割。尽管为开发新的DL语义细分模型而付出了许多努力,但对如何有效探索其概率图以获得最佳实例细分的关键问题的关注较少。我们观察到,DL语义分割模型可以使用概率图来生成许多可能的实例候选,并且可以通过从中选择一组“优化”候选者作为输出实例来实现准确的实例分割。此外,生成的实例候选者形成了一个行为良好的分层结构(森林),该结​​构允许以优化的方式选择实例。因此,我们提出了一个新的框架,称为层次地球移动的距离(H-EMD),例如在生物医学2D+时间视频和3D图像中进行分割,这些框架明确地将一致的实例选择与语义分割生成生成的概率图相结合。 H-EMD包含两个主要阶段。 (1)实例候选生成:通过在森林结构中生成许多实例候选者,在概率图中捕获实例结构的信息。 (2)实例候选选择:从候选设置中选择最终实例分割的实例。我们在实例候选森林上制定关键实例选择问题,作为基于地球搬运工(EMD)的优化问题,并通过整数线性编程来解决它。在八个生物医学视频或3D数据集上进行的广泛实验表明,H-EMD始终提高DL语义分割模型,并且具有最新的方法。

Deep learning (DL) based semantic segmentation methods have achieved excellent performance in biomedical image segmentation, producing high quality probability maps to allow extraction of rich instance information to facilitate good instance segmentation. While numerous efforts were put into developing new DL semantic segmentation models, less attention was paid to a key issue of how to effectively explore their probability maps to attain the best possible instance segmentation. We observe that probability maps by DL semantic segmentation models can be used to generate many possible instance candidates, and accurate instance segmentation can be achieved by selecting from them a set of "optimized" candidates as output instances. Further, the generated instance candidates form a well-behaved hierarchical structure (a forest), which allows selecting instances in an optimized manner. Hence, we propose a novel framework, called hierarchical earth mover's distance (H-EMD), for instance segmentation in biomedical 2D+time videos and 3D images, which judiciously incorporates consistent instance selection with semantic-segmentation-generated probability maps. H-EMD contains two main stages. (1) Instance candidate generation: capturing instance-structured information in probability maps by generating many instance candidates in a forest structure. (2) Instance candidate selection: selecting instances from the candidate set for final instance segmentation. We formulate a key instance selection problem on the instance candidate forest as an optimization problem based on the earth mover's distance (EMD), and solve it by integer linear programming. Extensive experiments on eight biomedical video or 3D datasets demonstrate that H-EMD consistently boosts DL semantic segmentation models and is highly competitive with state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源