论文标题

基于信息场的全球贝叶斯推断喷气运输系数

Information field based global Bayesian inference of the jet transport coefficient

论文作者

Xie, Man, Ke, Weiyao, Zhang, Hanzhong, Wang, Xin-Nian

论文摘要

贝叶斯统计推断是模型数据比较和提取物理参数的强大工具,这些参数通常是系统变量的未知函数。现有的贝叶斯分析通常依赖于未知函数的明确参数化。它可以引入远程相关性,这些相关性对可变空间区域的物理参数施加了虚拟约束,而实验数据未探测。我们开发了一种信息字段(if)方法来建模没有长期相关性的未知函数的先验分布。我们将IF方法应用于第一个全球贝叶斯的推断,即从所有现有的有关单包强生,Di-Hadron和$γ$ -HADRON SPECTRA的实验数据中的温度($ t $)的函数。提取的$ \ hat Q/t^3 $在逐步包括来自中央碰撞和较高碰撞能量的数据时,由于渐进式约束功率而表现出强大的$ t $依赖性。 IF方法可以保证提取的$ t $依赖性不会被特定的功能形式偏见。

Bayesian statistical inference is a powerful tool for model-data comparisons and extractions of physical parameters that are often unknown functions of system variables. Existing Bayesian analyses often rely on explicit parametrizations of the unknown function. It can introduce long-range correlations that impose fictitious constraints on physical parameters in regions of the variable space that are not probed by the experimental data. We develop an information field (IF) approach to modeling the prior distribution of the unknown function that is free of long-range correlations. We apply the IF approach to the first global Bayesian inference of the jet transport coefficient $\hat q$ as a function of temperature ($T$) from all existing experimental data on single-inclusive hadron, di-hadron and $γ$-hadron spectra in heavy-ion collisions at RHIC and LHC energies. The extracted $\hat q/T^3$ exhibits a strong $T$-dependence as a result of the progressive constraining power when data from more central collisions and at higher colliding energies are incrementally included. The IF method guarantees that the extracted $T$-dependence is not biased by a specific functional form.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源