论文标题

$(p,q)$增长的一类障碍问题的有限解决方案的较高的可不同性能

Higher differentiability for bounded solutions to a class of obstacle problems with $(p,q)$-growth

论文作者

Grimaldi, Antonio Giuseppe

论文摘要

我们建立了有限的最小化器对一类障碍问题的较高的分数可不同性,形式的非标准生长条件{gatch*} \ min \ min \ biggl \ {\ displayStyle \ displayStyle \int_Ωf(x,x,x,d t x,d t x,d t x,dw)dx \:\ w \ in \ in \ mathcal in \ mathcal {grogen {grogen {kig} big {其中$ω$是$ \ mathbb {r}^n $,$ n \ geq 2 $的有界开放集\ geqψ\ \ text {a.e。 in} \ω\} $是一类可允许的功能。如果障碍物$ψ$是本地界限的,我们证明解决方案的梯度继承了某些分数可不同性属性,假设障碍物的梯度和映射$ x \ mapstod_ξf(x,ξ)$属于一些合适的besov空间。主要新颖的是,这种假设与尺寸$ n $无关。

We establish the higher fractional differentiability of bounded minimizers to a class of obstacle problems with non-standard growth conditions of the form \begin{gather*} \min \biggl\{ \displaystyle\int_Ω F(x,Dw)dx \ : \ w \in \mathcal{K}_ψ(Ω) \biggr\}, \end{gather*} where $Ω$ is a bounded open set of $\mathbb{R}^n$, $n \geq 2$, the function $ψ\in W^{1,p}(Ω)$ is a fixed function called \textit{obstacle} and $\mathcal{K}_ψ(Ω) := \{ w \in W^{1,p}(Ω) : w \geq ψ\ \text{a.e. in} \ Ω\}$ is the class of admissible functions. If the obstacle $ψ$ is locally bounded, we prove that the gradient of solution inherits some fractional differentiability property, assuming that both the gradient of the obstacle and the mapping $x \mapsto D_ξF(x,ξ)$ belong to some suitable Besov space. The main novelty is that such assumptions are not related to the dimension $n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源