论文标题

关于Nielsen Zeta函数在solvmanifolds上的地图的合理性

On the rationality of the Nielsen zeta function for maps on solvmanifolds

论文作者

Dekimpe, Karel, Bussche, Iris Van den

论文摘要

在[3,9]中,如果$ f $是类型(R)的Infra-Solvmanifold的自图,则证明Nielsen Zeta函数$ n_f(z)$是合理的。但是,仍然未知$ n_f(z)$对于solvmanifolds上的自图是否合理。在本文中,我们证明$ n_f(z)$是合理的,如果$ f $是尺寸$ \ leq 5 $的(紧凑)solvmanifold的自图。在任何维度上,我们还表明,如果$ n_f(z)$是$ f $是$ {\ cal nr} $ - solvmanifold或solvmanifold或具有基本形式$ {\ mathbb z}^n \ rtimes {\ mathbb z} $的基本组的solvmanifold,则是合理的。

In [3,9], the Nielsen zeta function $N_f(z)$ has been shown to be rational if $f$ is a self-map of an infra-solvmanifold of type (R). It is, however, still unknown whether $N_f(z)$ is rational for self-maps on solvmanifolds. In this paper, we prove that $N_f(z)$ is rational if $f$ is a self-map of a (compact) solvmanifold of dimension $\leq 5$. In any dimension, we show additionally that $N_f(z)$ is rational if $f$ is a self-map of an ${\cal NR}$-solvmanifold or a solvmanifold with fundamental group of the form ${\mathbb Z}^n\rtimes{\mathbb Z}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源