论文标题
电动机的最佳设计,并有效处理约束和替代援助
Optimal Design of Electric Machine with Efficient Handling of Constraints and Surrogate Assistance
论文作者
论文摘要
电机设计优化是一个计算昂贵的多目标优化问题。尽管目标需要耗时的有限元分析,但优化约束通常基于数学表达式,例如几何约束。本文通过提出一种融合到普遍使用的进化多目标优化算法-NSGA-II中的优化方法来调查混合计算昂贵性质的优化问题。所提出的方法利用了几何约束的廉价性来通过使用自定义维修操作员来生成可行的设计。提出的方法还通过合并替代模型来预测机器性能来解决耗时的目标函数。本文成功地确定了所提出的方法比常规优化方法的优越性。这项研究清楚地表明,如何针对需要异质评估时间的多个目标和约束来优化复杂的工程设计,并且可以分析最佳解决方案,以选择单个首选解决方案,并且重要的是揭示出最佳解决方案作为设计原理的最佳解决方案的重要设计特征。
Electric machine design optimization is a computationally expensive multi-objective optimization problem. While the objectives require time-consuming finite element analysis, optimization constraints can often be based on mathematical expressions, such as geometric constraints. This article investigates this optimization problem of mixed computationally expensive nature by proposing an optimization method incorporated into a popularly-used evolutionary multi-objective optimization algorithm - NSGA-II. The proposed method exploits the inexpensiveness of geometric constraints to generate feasible designs by using a custom repair operator. The proposed method also addresses the time-consuming objective functions by incorporating surrogate models for predicting machine performance. The article successfully establishes the superiority of the proposed method over the conventional optimization approach. This study clearly demonstrates how a complex engineering design can be optimized for multiple objectives and constraints requiring heterogeneous evaluation times and optimal solutions can be analyzed to select a single preferred solution and importantly harnessed to reveal vital design features common to optimal solutions as design principles.