论文标题

可测量空间上激活定向概率的引起转移的场方程

A field equation for induction-transduction of activation-deactivation probability on measurable space

论文作者

Bastian, Caleb Deen, Rabitz, Herschel

论文摘要

激活定位点的诱导 - 转移是基本的动作机制,其基础是无数系统和现象,数学,自然和人类学的基础,并且可以表现出复杂的行为,例如自我激发,相位过渡,滞后,滞后,滞后,极化,周期性,周期性,波浪,波动行为,角度,几何,能量,能量和能量转移。我们基于在图形随机转换下进行的图像图像的动力学来描述一类用于感应 - 转移的原始物。我们在任意可测量的空间上得出了激活局(Bernoulli)法律定律的场方程,并在单位间隔中描述了一些作用机理。

Induction-transduction of activating-deactivating points are fundamental mechanisms of action that underlie innumerable systems and phenomena, mathematical, natural, and anthropogenic, and can exhibit complex behaviors such as self-excitation, phase transitions, hysteresis, polarization, periodicity, chaos, wave behavior, geometry, and energy transfer. We describe a class of primitives for induction-transduction based on dynamics on images of marked random counting measures under graphical random transformations. We derive a field equation for the law of the activation-deactivation (Bernoulli) process on an arbitrary measurable space and describe some mechanisms of action on the unit interval.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源