论文标题

尖峰门控流:用于在线手势识别的基于层次结构的尖峰神经网络

The Spike Gating Flow: A Hierarchical Structure Based Spiking Neural Network for Online Gesture Recognition

论文作者

Zhao, Zihao, Wang, Yanhong, Zou, Qiaosha, Xu, Tie, Tao, Fangbo, Zhang, Jiansong, Wang, Xiaoan, Shi, C. -J. Richard, Luo, Junwen, Xie, Yuan

论文摘要

动作识别是人工智能的令人兴奋的研究途径,因为它可能是新兴工业领域(例如机器人视觉和汽车)的游戏规则改变者。但是,由于巨大的计算成本和效率低下的学习,当前的深度学习面临着此类应用的主要挑战。因此,我们开发了一种新型的基于脑启发的尖峰神经网络(SNN)的系统,标题为用于在线动作学习的峰值门控流(SGF)。开发的系统由多个以层次方式组装的SGF单元组成。单个SGF单元涉及三层:特征提取层,事件驱动的层和基于直方图的训练层。为了展示开发的系统功能,我们采用标准的动态视觉传感器(DVS)手势分类作为基准。结果表明,我们可以达到87.5%的精度,与深度学习(DL)相当,但在较小的培训/推理数据数量比1.5:1。在学习过程中,只需要一个单个培训时代。同时,据我们所知,这是基于非背景算法的SNN中最高准确性。最后,我们总结了开发网络的几个射击学习范式:1)基于层次结构的网络设计涉及人类的先验知识; 2)用于基于内容的全局动态特征检测的SNN。

Action recognition is an exciting research avenue for artificial intelligence since it may be a game changer in the emerging industrial fields such as robotic visions and automobiles. However, current deep learning faces major challenges for such applications because of the huge computational cost and the inefficient learning. Hence, we develop a novel brain-inspired Spiking Neural Network (SNN) based system titled Spiking Gating Flow (SGF) for online action learning. The developed system consists of multiple SGF units which assembled in a hierarchical manner. A single SGF unit involves three layers: a feature extraction layer, an event-driven layer and a histogram-based training layer. To demonstrate the developed system capabilities, we employ a standard Dynamic Vision Sensor (DVS) gesture classification as a benchmark. The results indicate that we can achieve 87.5% accuracy which is comparable with Deep Learning (DL), but at smaller training/inference data number ratio 1.5:1. And only a single training epoch is required during the learning process. Meanwhile, to the best of our knowledge, this is the highest accuracy among the non-backpropagation algorithm based SNNs. At last, we conclude the few-shot learning paradigm of the developed network: 1) a hierarchical structure-based network design involves human prior knowledge; 2) SNNs for content based global dynamic feature detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源