论文标题
随机相互作用系统的平衡扰动
Equilibrium perturbations for stochastic interacting systems
论文作者
论文摘要
我们考虑了两个随机系统的平衡扰动:$ d $维的广义排除过程和一维振荡器链。我们将$ n^{ - α} $的顺序的扰动添加到均衡配置文件中,并加快了该过程的加快参数的$ n^{1+κ} $。在对$κ$和$α$的一些其他约束下,我们显示了在排除过程中的汉堡方程式的扰动数量,以及在平滑状态下,在Anharmonic链中的两个解耦汉堡方程。
We consider the equilibrium perturbations for two stochastic systems: the $d$-dimensional generalized exclusion process and the one-dimensional chain of anharmonic oscillators. We add a perturbation of order $N^{-α}$ to the equilibrium profile and speed up the process by $N^{1+κ}$ for parameters $0<κ\leα$. Under some additional constraints on $κ$ and $α$, we show the perturbed quantities evolve according to the Burgers equation in the exclusion process, and to two decoupled Burgers equations in the anharmonic chain, both in the smooth regime.