论文标题
金属氧化石墨烯纳米片,用于2.6 V水性电化学混合电容器
Metal Oxide-Vertical Graphene Nanosheets for 2.6 V Aqueous Electrochemical Hybrid Capacitor
论文作者
论文摘要
与常规电池相比,其高功率密度和出色的周期稳定性,目前被认为是能源储能的最有希望的竞争者。但是,制造电极材料并选择合适的水解物对于开发具有高电荷存储容量的电化学电容器设备至关重要。本文中,我们报告了一种可行的方法,可以分别合成MNO2/垂直石墨烯纳米片(VGN)和Fe2O3/VGN为正和负电极。 VGN骨骼的表面用具有海绵状形态的MNO2独立装饰,而Fe2O3具有像形态一样的纳米层。建立了VGN网络上金属氧化物生长机制的示意图。电极的电荷储存容量比裸露的VGN(0.47 MF/cm2)高约250倍,其比电容为118(MNO2/VGN)和151 MF/CM2(FE2O3/VGN)。除了双层电容贡献外,多孔互连的垂直石墨烯结构还用作金属氧化物材料的机械骨架,并为电子传输提供了多个导电通道。制造的不对称装置表现出76 MF/cm2的特异性电容,能量密度为71 microWH/cm2,具有出色的电化学稳定性,在2.6 V的潜在窗口中,具有出色的电化学稳定性,最高为12000个周期。不对称电化学机械设备的可承诺性能可在潜在的能源设备中实现了可靠的设备。
Aqueous asymmetric electrochemical capacitor, with their high power density and superior cycle stability in comparison to conventional batteries, are presently considered as the most promising contender for energy storage. However, fabricating an electrode material and choosing a suitable aqueous electrolyte are vital in developing an electrochemical capacitor device with high charge storage capacity. Herein, we report a feasible method to synthesize MnO2/Vertical graphene nanosheets (VGN) and Fe2O3/VGN as positive and negative electrodes, respectively. The surface of VGN skeleton is independently decorated with MnO2 having sponge gourd-like morphology and Fe2O3 having nanorice like morphology. A schematic representation of the growth mechanism for metal oxide on VGN network is established. Both the electrode have shown around 250 times higher charge-storage capacity than the bare VGN (0.47 mF/cm2) with the specific capacitance of 118 (MnO2/VGN) and 151 mF/cm2 (Fe2O3/VGN). In addition to the double layer capacitance contribution, the porous interconnected vertical graphene architecture serves as a mechanical backbone for the metal oxide materials and provides multiple conducting channels for the electron transport. The fabricated asymmetric device exhibited a specific capacitance of 76 mF/cm2 and energy density of 71 microWh/cm2 with an excellent electrochemical stability up to 12000 cycles, over a potential window of 2.6 V. The commendable performance of asymmetric electrochemical capacitor device authenticated its potential utilization for next-generation portable energy storage device.