论文标题
赤道平衡的C4-Face-Magic标签在Klein瓶网格图上
Equatorially balanced C4-face-magic labelings on Klein bottle grid graphs
论文作者
论文摘要
对于图$ g =(v,e)$嵌入在klein瓶中的$,令$ \ natercal {f}(g)$表示$ g $的面孔。然后,$ g $如果存在双循环$ f:v(g)\ to \ to \ {1,2,\ dots,| v(g),| v(g)| \} $,则称为$ c_k $ -face-face-magic klein瓶图。 $ S $。令$ x_v = f(v)$ for v(g)$中的所有$ v \。我们称$ \ {x_v:v \ in V(g)\} $ a $ c_k $ -face-magic klein瓶在$ g $上标记。我们认为$ \ times n $网格图,由$ \ Mathcal {k} _ {m,n} $表示,以自然方式嵌入Klein瓶中。我们表明,对于$ m,n \ ge 2 $,$ \ mathcal {k} _ {m,n} $在且仅当$ n $均匀时,就允许$ c_4 $ -face-magic-magic klein瓶标签。我们说$ C_4 $ -FACE-MAGIC KLEIN瓶标记$ \ {X_ {X_ {i,j} :( i,j)\ in V(\ Mathcal {k} _ {m,n}) x_ {i,n+1- j} = \ tfrac {1} {2} s $ for ALL $(i,j)\ in V(\ Mathcal {k} _ {m,n})$。我们表明,当$ m $奇怪时,$ c_4 $ -face-magic klein瓶在$ \ mathcal {k} _ {m,n} $上都必须保持平衡。另外,当$ m $奇怪时,我们表明(klein瓶上的最多对称性)$ C_4 $ -FACE-MAGIC KLEIN BOTTER BAILELINGS上的$ M \ Times 4 $ Klein瓶网格图为$ 2^m \,(M-1)! \,τ(m)$,其中$τ(m)$是$ m $的正数。 此外,让$ m \ ge 3 $成为一个奇数,而$ n \ ge 6 $是整数。然后,最小数量的不同数量$ \ mathcal {k} _ {m,n} $(klein瓶上的最高符号)是$(5 \ cdot 2^m)(m-cdot 2^m)(m-cdot 2^m)! 2^m)(m-1)!$如果$ n \ equiv 2 \ pmod {4} $。
For a graph $G = (V, E)$ embedded in the Klein bottle, let $\mathcal{F}(G)$ denote the set of faces of $G$. Then, $G$ is called a $C_k$-face-magic Klein bottle graph if there exists a bijection $f: V(G) \to \{1, 2, \dots, |V(G)|\}$ such that for any $F \in \mathcal{F}(G)$ with $F \cong C_k$, the sum of all the vertex labelings along $C_k$ is a constant $S$. Let $x_v =f(v)$ for all $v\in V(G)$. We call $\{x_v : v\in V(G)\}$ a $C_k$-face-magic Klein bottle labeling on $G$. We consider the $m \times n$ grid graph, denoted by $\mathcal{K}_{m,n}$, embedded in the Klein bottle in the natural way. We show that for $m,n\ge 2$, $\mathcal{K}_{m,n}$ admits a $C_4$-face-magic Klein bottle labeling if and only if $n$ is even. We say that a $C_4$-face-magic Klein bottle labeling $\{x_{i,j}: (i,j) \in V(\mathcal{K}_{m,n}) \}$ on $\mathcal{K}_{m,n}$ is equatorially balanced if $x_{i,j} + x_{i,n+1-j} = \tfrac{1}{2} S$ for all $(i,j) \in V(\mathcal{K}_{m,n})$. We show that when $m$ is odd, a $C_4$-face-magic Klein bottle labeling on $\mathcal{K}_{m,n}$ must be equatorially balanced. Also when $m$ is odd, we show that (up to symmetries on the Klein bottle) the number of $C_4$-face-magic Klein bottle labelings on the $m \times 4$ Klein bottle grid graph is $2^m \, (m-1)! \, τ(m)$, where $τ(m)$ is the number of positive divisors of $m$. Furthermore, let $m\ge 3$ be an odd integer and $n \ge 6$ be an even integer. Then, the minimum number of distinct $C_4$-face-magic Klein bottle labelings $X$ on $\mathcal{K}_{m,n}$ (up to symmetries on a Klein bottle) is either $(5\cdot 2^m)(m-1)!$ if $n \equiv 0\pmod{4}$, or $(6\cdot 2^m)(m-1)!$ if $n \equiv 2\pmod{4}$.