论文标题
在开放量子系统中拼凑代数
Scrambling of Algebras in Open Quantum Systems
论文作者
论文摘要
量子系统中信息动态扰动的许多定量方法涉及对超时订购的相关器(OTOC)的研究。在本文中,我们引入了一个代数OTOC($ \ Mathcal {a} $ - OTOC),该代数允许我们研究量子通道下通用量子子系统的信息。对于封闭的量子系统,该代数框架最近被用来统一操作员纠缠,相干能力和Loschmidt Echo的量子信息理论概念。这项工作的主要重点是将这些技术的自然概括用于打开量子系统。我们首先表明,对于统一动力学,$ \ MATHCAL {a} $ - OTOC量化了一般的信息争夺的概念,即观察到的subsergra及其通勤者。另一方面,对于开放的量子系统,我们发现了全球环境腐烂与当地扰动信息之间的竞争。我们通过分析研究代数和量子通道的各种说明性示例来说明这种相互作用。为了补充我们的分析结果,我们对两个范式系统进行了数值模拟:PXP模型和Heisenberg XXX模型,在Dephasing下。我们的数值结果揭示了与多体疤痕和无腐蚀子空间的稳定性的联系。
Many quantitative approaches to the dynamical scrambling of information in quantum systems involve the study of out-of-time-ordered correlators (OTOCs). In this paper, we introduce an algebraic OTOC ($\mathcal{A}$-OTOC) that allows us to study information scrambling of generalized quantum subsystems under quantum channels. For closed quantum systems, this algebraic framework was recently employed to unify quantum information-theoretic notions of operator entanglement, coherence-generating power, and Loschmidt echo. The main focus of this work is to provide a natural generalization of these techniques to open quantum systems. We first show that, for unitary dynamics, the $\mathcal{A}$-OTOC quantifies a generalized notion of information scrambling, namely between a subalgebra of observables and its commutant. For open quantum systems, on the other hand, we find a competition between the global environmental decoherence and the local scrambling of information. We illustrate this interplay by analytically studying various illustrative examples of algebras and quantum channels. To complement our analytical results, we perform numerical simulations of two paradigmatic systems: the PXP model and the Heisenberg XXX model, under dephasing. Our numerical results reveal connections with many-body scars and the stability of decoherence-free subspaces.