论文标题
关于$ \ MATHCAL P(λ)/[λ]^{<λ} $的自动形态学
On automorphisms of $\mathcal P(λ)/[λ]^{<λ}$
论文作者
论文摘要
我们调查了``$ \ Mathcal P(λ)/[λ]^{<λ} $的所有自动形态都是微不足道的''。我们表明,MA暗示了常规无数$λ<2^{\ Aleph_0} $的说法;如果$ 2^λ=λ^+$,则该语句对于可测量的$λ$;对于``密集的琐碎''而言,它可以强制(与$ 2^λ=λ^{++} $一起使用,对于不可访问的$λ$。
We investigate the statement ``all automorphisms of $\mathcal P(λ)/[λ]^{<λ}$ are trivial''. We show that MA implies the statement for regular uncountable $λ<2^{\aleph_0}$; that the statement is false for measurable $λ$ if $2^λ=λ^+$; and that for ``densely trivial'' it can be forced (together with $2^λ=λ^{++}$) for inaccessible $λ$.