论文标题
模拟theta功能和无限模块形式
Mock theta functions and indefinite modular forms
论文作者
论文摘要
在符号模拟theta函数的显式公式中,从$ d(2,1; a)$的coroot晶格获得的$φ^{( - )[M,s]} $自然而然地函数。我们通过应用Zwegers的模拟theta函数修改理论来计算它们的模块化转换属性,并表明这些函数的$ \ Mathbf {C} $ - 这些函数的线性跨度为$ SL_2(\ Mathbf {Z})$ - 不变。
In the explicit formula for the signed mock theta functions $Φ^{(-)[m,s]}$ obtained from the coroot lattice of $D(2,1;a)$, functions with indefinite quadratic forms naturally take place. We compute their modular transformation properties by applying the Zwegers' modification theory of mock theta functions and show that the $\mathbf{C}$-linear span of these functions is $SL_2(\mathbf{Z})$-invariant.