论文标题
使用分布可靠的优化,在空间空气地面集成网络中卸载能量受限的计算卸载
Energy-Constrained Computation Offloading in Space-Air-Ground Integrated Networks using Distributionally Robust Optimization
论文作者
论文摘要
随着将大量设备连接到Internet的迅速开发,特别是对于没有蜂窝网络基础架构的偏远地区,空间空气地面集成网络(Sagins)出现并卸载计算密集型任务。在本文中,我们考虑了一个萨金,其中包括提供与云服务器的连接,无人驾驶飞机(UAV)以及附近的基站(BSS)提供连接的多个低地球轨道(LEO)卫星,其中包括提供边缘计算服务的。无人机沿着固定轨迹飞行,以收集由Internet(IoT)设备生成的任务,并将这些任务转发到BS或云服务器以进行进一步处理。为了促进有效的处理,无人机需要决定在哪里卸载以及卸载任务的比例。但是,实际上,由于环境和实际需求的差异,到达任务的数量尚不确定。如果确定性优化用于制定卸载策略,则可能会发生不必要的系统开销或更高的任务下降率,这严重损害了系统的鲁棒性。为了解决这个问题,我们通过数据驱动的方法表征了不确定性,并制定了分布强大的优化问题,以最大程度地减少在最坏情况下的概率分布下预期的能量受限的系统延迟。此外,提出了分布稳健的潜伏优化算法以达到次优溶液。最后,我们对Realworld数据集执行模拟,并与其他基准方案进行比较,以验证我们提出的算法的效率和鲁棒性。
With the rapid development of connecting massive devices to the Internet, especially for remote areas without cellular network infrastructures, space-air-ground integrated networks (SAGINs) emerge and offload computation-intensive tasks. In this paper, we consider a SAGIN, where multiple low-earth-orbit (LEO) satellites providing connections to the cloud server, an unmanned aerial vehicle (UAV), and nearby base stations (BSs) providing edge computing services are included. The UAV flies along a fixed trajectory to collect tasks generated by Internet of Things (IoT) devices, and forwards these tasks to a BS or the cloud server for further processing. To facilitate efficient processing, the UAV needs to decide where to offload as well as the proportion of offloaded tasks. However, in practice, due to the variability of environment and actual demand, the amount of arrival tasks is uncertain. If the deterministic optimization is utilized to develop offloading strategy, unnecessary system overhead or higher task drop rate may occur, which severely damages the system robustness. To address this issue, we characterize the uncertainty with a data-driven approach, and formulate a distributionally robust optimization problem to minimize the expected energy-constrained system latency under the worst-case probability distribution. Furthermore, the distributionally robust latency optimization algorithm is proposed to reach the suboptimal solution. Finally, we perform simulations on the realworld data set, and compare with other benchmark schemes to verify the efficiency and robustness of our proposed algorithm.