论文标题

张量量的耦合电子成对型近似值状态波形

Coupled electron pair-type approximations for tensor product state wavefunctions

论文作者

Abraham, Vibin, Mayhall, Nicholas J.

论文摘要

尺寸扩展性(定义为具有系统尺寸的能量的正确尺度),是任何多体方法的理想属性。传统的CI方法并不是尺寸较大,因此随着系统变大随着系统的增加而增加。可以将耦合电子对近似(CEPA)方法构造为可确保尺寸扩展的截断配置相互作用(CI)的简单扩展。 CEPA及其变体的主要问题之一是,当系统开始强烈关联时,振幅方程中会出现奇异性。在这项工作中,我们将传统的基于Slater决定因素的耦合电子对方法将CEPA-0,平均耦合对函数(ACPF)和平均二次耦合群集(AQCC)(AQCC)延伸到基于张量产品状态(TPS)的新配方。我们表明,通常可以选择TPS基础,以使其消除通常破坏基于CEPA的方法准确性的奇异性。可以通过将系统划分为单独的不相交簇并形成最终波函数作为这些簇的许多体状态的张量产物来形成合适的TPS表示。我们证明了这些方法在简单的债券断裂系统上的应用,例如CH $ _4 $和F $ _2 $,基于确定性的CEPA方法失败。我们进一步将TPS-CEPA方法应用于Stillbene同组化,很少有平面$π-$共轭系统。总体而言,结果表明,与常见的电子结构方法相比,TPS-CEPA方法可以消除奇异性并提供改进的数值结果。

Size extensivity, defined as the correct scaling of energy with system size, is a desirable property for any many-body method. Traditional CI methods are not size extensive hence the error increases as the system gets larger. Coupled electron pair approximation (CEPA) methods can be constructed as simple extensions of truncated configuration interaction (CI) that ensures size extensivity. One of the major issues with the CEPA and its variants is that singularities arise in the amplitude equations when the system starts to be strongly correlated. In this work, we extend the traditional Slater determinant-based coupled electron pair approaches like CEPA-0, averaged coupled-pair functional (ACPF) and average quadratic coupled-cluster (AQCC) to a new formulation based on tensor product states (TPS). We show that a TPS basis can often be chosen such that it removes the singularities that commonly destroy the accuracy of CEPA-based methods. A suitable TPS representation can be formed by partitioning the system into separate disjoint clusters and forming the final wavefunction as the tensor product of the many body states of these clusters. We demonstrate the application of these methods on simple bond breaking systems such as CH$_4$ and F$_2$ where determinant based CEPA methods fail. We further apply the TPS-CEPA approach to stillbene isomerization and few planar $π-$conjugated systems. Overall the results show that the TPS-CEPA method can remove the singularities and provide improved numerical results compared to common electronic structure methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源