论文标题
在边缘设备上实施用于医疗图像分割的修改后的U-NET
Implementation of a Modified U-Net for Medical Image Segmentation on Edge Devices
论文作者
论文摘要
深度学习技术,尤其是卷积神经网络,在计算机视觉和医学成像应用中表现出巨大的潜力。但是,深度学习模型在计算上是要求的,因为它们需要巨大的计算能力和用于模型培训的专门处理硬件。为了使这些模型可移植并兼容用于原型制作,必须在低功率设备上实现。在这项工作中,我们介绍了在Intel Movidius神经计算棒2(NCS-2)上的实施,以分割医学图像。我们选择了U-NET,因为在医学图像分割中,U-NET是一个突出的模型,即使数据集大小很小,也可以为医疗图像分割提供改进的性能。根据骰子得分,评估了修改后的U-NET模型的性能。报告了在三个医学成像数据集上进行分割任务的实验:Brats Brats数据集,Heart MRI数据集和Ziehl-Neelsen痰涂片显微镜图像(ZNSDB)数据集。对于拟议的模型,我们将参数的数量从U-NET模型的3000万个减少到拟议的体系结构中的4900万。实验结果表明,修改后的U-NET提供可比性的性能,同时需要大大降低资源并对NCS-2进行推断。记录的最大骰子得分为Brats数据集为0.96,心脏MRI数据集为0.94,ZnSDB数据集为0.74。
Deep learning techniques, particularly convolutional neural networks, have shown great potential in computer vision and medical imaging applications. However, deep learning models are computationally demanding as they require enormous computational power and specialized processing hardware for model training. To make these models portable and compatible for prototyping, their implementation on low-power devices is imperative. In this work, we present the implementation of Modified U-Net on Intel Movidius Neural Compute Stick 2 (NCS-2) for the segmentation of medical images. We selected U-Net because, in medical image segmentation, U-Net is a prominent model that provides improved performance for medical image segmentation even if the dataset size is small. The modified U-Net model is evaluated for performance in terms of dice score. Experiments are reported for segmentation task on three medical imaging datasets: BraTs dataset of brain MRI, heart MRI dataset, and Ziehl-Neelsen sputum smear microscopy image (ZNSDB) dataset. For the proposed model, we reduced the number of parameters from 30 million in the U-Net model to 0.49 million in the proposed architecture. Experimental results show that the modified U-Net provides comparable performance while requiring significantly lower resources and provides inference on the NCS-2. The maximum dice scores recorded are 0.96 for the BraTs dataset, 0.94 for the heart MRI dataset, and 0.74 for the ZNSDB dataset.