论文标题
与间隔因变量不精确回归的神经网络模型
Neural network model for imprecise regression with interval dependent variables
论文作者
论文摘要
本文提出了一种计算可行的方法,可以在回归分析的间隔中计算严格的界限,以说明输出变量的认知不确定性。新的迭代方法使用机器学习算法将不精确的回归模型拟合到由间隔而不是点值组成的数据。该方法基于单层间隔神经网络,可以训练以产生间隔预测。它寻求参数的最佳模型参数,该模型使用基于一阶梯度的优化和间隔分析计算来最大程度地减少因变量的实际间隔值和预测的间隔值,以模拟数据的测量不确定性。还提出了多层神经网络的附加扩展。我们将解释变量视为精确的点值,但是所测量的相关值以间隔界限为特征,而没有任何概率信息。提出的迭代方法估计了期望区域的下限和上限,这是基于普通回归分析获得的所有可能精确回归线的包络,该包膜基于从相应y间隔及其X值的实现点的任何配置。
This paper presents a computationally feasible method to compute rigorous bounds on the interval-generalisation of regression analysis to account for epistemic uncertainty in the output variables. The new iterative method uses machine learning algorithms to fit an imprecise regression model to data that consist of intervals rather than point values. The method is based on a single-layer interval neural network which can be trained to produce an interval prediction. It seeks parameters for the optimal model that minimizes the mean squared error between the actual and predicted interval values of the dependent variable using a first-order gradient-based optimization and interval analysis computations to model the measurement imprecision of the data. An additional extension to a multi-layer neural network is also presented. We consider the explanatory variables to be precise point values, but the measured dependent values are characterized by interval bounds without any probabilistic information. The proposed iterative method estimates the lower and upper bounds of the expectation region, which is an envelope of all possible precise regression lines obtained by ordinary regression analysis based on any configuration of real-valued points from the respective y-intervals and their x-values.