论文标题

NORPPA:新颖的环密封件通过PELAGE模式聚合重新识别

NORPPA: NOvel Ringed seal re-identification by Pelage Pattern Aggregation

论文作者

Nepovinnykh, Ekaterina, Chelak, Ilia, Eerola, Tuomas, Kälviäinen, Heikki

论文摘要

我们提出了一种Saimaa环密封(Pusa hispida saimensis)的方法。通过摄像机捕获和众包访问大型图像量,为动物监测和保护提供了新的可能性,并呼吁自动分析方法,特别是在重新识别图像中的单个动物时。所提出的方法通过膜模式聚集(NORPPA)重新识别了新型环形密封件,利用了Saimaa环形密封件的永久和独特的毛线模式和基于内容的图像检索技术。首先,对查询图像进行了预处理,每个密封实例都进行了分割。接下来,使用基于U-NET编码器解码器的方法提取密封件的层模式。然后,将基于CNN的仿射不变特征嵌入并汇总到Fisher载体中。最后,使用Fisher载体之间的余弦距离可从已知个体数据库中找到最佳匹配。我们在新的挑战性Saimaa环形密封件重新识别数据集上对方法进行了各种修改的广泛实验。在与替代方法的比较中,提出的方法可在我们的数据集上产生最佳的重新识别精度。

We propose a method for Saimaa ringed seal (Pusa hispida saimensis) re-identification. Access to large image volumes through camera trapping and crowdsourcing provides novel possibilities for animal monitoring and conservation and calls for automatic methods for analysis, in particular, when re-identifying individual animals from the images. The proposed method NOvel Ringed seal re-identification by Pelage Pattern Aggregation (NORPPA) utilizes the permanent and unique pelage pattern of Saimaa ringed seals and content-based image retrieval techniques. First, the query image is preprocessed, and each seal instance is segmented. Next, the seal's pelage pattern is extracted using a U-net encoder-decoder based method. Then, CNN-based affine invariant features are embedded and aggregated into Fisher Vectors. Finally, the cosine distance between the Fisher Vectors is used to find the best match from a database of known individuals. We perform extensive experiments of various modifications of the method on a new challenging Saimaa ringed seals re-identification dataset. The proposed method is shown to produce the best re-identification accuracy on our dataset in comparisons with alternative approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源