论文标题
硬件加速的火星样品通过从影像学模拟中进行深度转移学习来定位
Hardware-accelerated Mars Sample Localization via deep transfer learning from photorealistic simulations
论文作者
论文摘要
火星样本返回运动的目标是从火星表面收集土壤样品,并将其返回地球进行进一步研究。样品将通过持久的漫游者获取并存储在金属管中,并沉积在火星表面上。作为这项活动的一部分,预计样品获取漫游车将负责本地化和收集150多个火星溶胶的35个样品管。自主功能对于整个活动的成功和尤其是样本提取流浪者至关重要。这项工作提出了一种新型的系统体系结构,用于对样品管的自主检测和构成估计。对于检测阶段,提出了深层神经网络和从合成数据集中进行转移学习。该数据集是根据火星场景的感性3D模拟创建的。此外,使用计算机视觉技术(例如检测区域上的轮廓检测和线条拟合)估算样品管姿势。最后,使用像火星样测试床上的Exomars测试漫游者对样品定位程序进行了实验室测试。这些测试验证了不同硬件体系结构中提出的方法,从而提供了与样本检测和姿势估计相关的有希望的结果。
The goal of the Mars Sample Return campaign is to collect soil samples from the surface of Mars and return them to Earth for further study. The samples will be acquired and stored in metal tubes by the Perseverance rover and deposited on the Martian surface. As part of this campaign, it is expected that the Sample Fetch Rover will be in charge of localizing and gathering up to 35 sample tubes over 150 Martian sols. Autonomous capabilities are critical for the success of the overall campaign and for the Sample Fetch Rover in particular. This work proposes a novel system architecture for the autonomous detection and pose estimation of the sample tubes. For the detection stage, a Deep Neural Network and transfer learning from a synthetic dataset are proposed. The dataset is created from photorealistic 3D simulations of Martian scenarios. Additionally, the sample tubes poses are estimated using Computer Vision techniques such as contour detection and line fitting on the detected area. Finally, laboratory tests of the Sample Localization procedure are performed using the ExoMars Testing Rover on a Mars-like testbed. These tests validate the proposed approach in different hardware architectures, providing promising results related to the sample detection and pose estimation.