论文标题
核心:面部伪造检测的一致表示学习
CORE: Consistent Representation Learning for Face Forgery Detection
论文作者
论文摘要
面部操纵技术迅速发展,并引起广泛的公众关注。尽管香草卷积神经网络达到了可接受的性能,但它们却遭受了过度拟合的问题。为了减轻这个问题,有一种趋势是引入一些基于擦除的增强。我们发现,这些方法确实试图通过为不同的增强图像分配相同的标签来隐式诱导不同的增强表示。但是,由于缺乏明确的正则化,不同表示形式之间的一致性不那么令人满意。因此,我们明确地限制了不同表示形式的一致性,并提出了一个简单而有效的框架,一致的表示学习(核心)。具体而言,我们首先以不同的增强捕获不同的表示形式,然后将表示的余弦距离正规化以提高一致性。广泛的实验(内部和跨数据集)表明,核心对最新的面部伪造检测方法表现出色。
Face manipulation techniques develop rapidly and arouse widespread public concerns. Despite that vanilla convolutional neural networks achieve acceptable performance, they suffer from the overfitting issue. To relieve this issue, there is a trend to introduce some erasing-based augmentations. We find that these methods indeed attempt to implicitly induce more consistent representations for different augmentations via assigning the same label for different augmented images. However, due to the lack of explicit regularization, the consistency between different representations is less satisfactory. Therefore, we constrain the consistency of different representations explicitly and propose a simple yet effective framework, COnsistent REpresentation Learning (CORE). Specifically, we first capture the different representations with different augmentations, then regularize the cosine distance of the representations to enhance the consistency. Extensive experiments (in-dataset and cross-dataset) demonstrate that CORE performs favorably against state-of-the-art face forgery detection methods.