论文标题

与在角动量中的四个效率的角度零空间零空间$ j = 9/2 $壳的属性有关

Relation to a property of the angular momentum zero space of states of four fermions in an angular momentum $j = 9/2$ shell unexpectedly found to be stationary for any rotationally invariant two-body interaction

论文作者

Neergård, K.

论文摘要

具有角动量$ i = 4 $ i = 4 $ i = 4 $和〜6中有角动量的状态的存在,尽管存在相同的角动量,但对于任何具有相同的角动量的其他状态,埃斯科德罗斯 - 扎米克(Escuderos-Zamick)的存在与任何相同的状态相当于$ i = $ i = $ i = $ i = $ i = $ i = $ i = $ i = $ i = $ i = $ i = $ i = $ i = $ i = $ i = $ i = $ i = $ i = 0通过与等效陈述的先前验证的精确计算来验证此不变性。它解释了Escuderos-Zamick态的发生,仅需$ i = 4 $和6。分析了任意互动对不变空间及其正交补体的作用,从而使Escuderos-Zamick能量水平与$ i = 10 $ = 10 $和12的水平之间的关系与$ i = 10 $ and $^$^$^$^$^94} $^94}的相关性根据这种关系,讨论了$^{74} $ ni。

The existence of states with angular momenta $I = 4$ and~6 of four fermions in an angular momentum $j = 9/2$ shell that are stationary for any rotationally invariant two-body interaction despite the presence of other states with the same angular momentum, the Escuderos-Zamick states, is shown to be equivalent to the invariance to any such interaction of the span of states generated from $I = 0$ states by one-body operators. This invariance is verified by exact calculation independently of previous verifications of the equivalent statement. It explains the occurrence of the Escuderos-Zamick states for just $I = 4$ and 6. The action of an arbitrary interaction on the invariant space and its orthogonal complement is analyzed, leading to a relation of the Escuderos-Zamick energy levels to levels with $I = 10$ and 12. Aspects of the observed spectra of $^{94}$Ru, $^{96}$Pd, and $^{74}$Ni are discussed in the light of this relation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源