论文标题
在一般相对论中解构缩放病毒身份:球形对称性及以后
Deconstructing scaling virial identities in General Relativity: spherical symmetry and beyond
论文作者
论文摘要
通过扩张(缩放)参数获得的德里克型病毒身份在现场理论中具有多种应用。我们在相对论的重力中解构了这种病毒身份,表明它们如何被重塑为运动方程式的适当组合的不言而喻的积分。在球形对称性中,适当的组合和量规选择保证几何部分可以集成以产生病毒式身份的主形式,作为非平凡的能量摩尔植物平衡条件,对于任何重要的模型,都对渐近平坦的黑洞和自我赠与的孤子有效。指定物质模型,我们恢复了通过缩放过程获得的先前结果。然后,我们讨论了更普遍的固定,符号,渐近平坦的黑洞或孤子解决方案的案例,以特定的规格提出了其病毒身份的主形式,但无论物质含量如何。在平坦的时空极限中,球形和轴向病例的主要病毒身份都将Deser讨论的主要压力的平衡状况降低到主要压力的平衡状态。
Derrick-type virial identities, obtained via dilatation (scaling) arguments, have a variety of applications in field theories. We deconstruct such virial identities in relativistic gravity showing how they can be recast as self-evident integrals of appropriate combinations of the equations of motion. In spherical symmetry, the appropriate combination and gauge choice guarantee the geometric part can be integrated out to yield a master form of the virial identity as a non-trivial energy-momentum balance condition, valid for both asymptotically flat black holes and self-gravitating solitons, for any matter model. Specifying the matter model we recover previous results obtained via the scaling procedure. We then discuss the more general case of stationary, axi-symmetric, asymptotically flat black hole or solitonic solutions in General Relativity, for which a master form for their virial identity is proposed, in a specific gauge but regardless of the matter content. In the flat spacetime limit, the master virial identity for both the spherical and axial cases reduces to a balance condition for the principal pressures, discussed by Deser.