论文标题

部分可观测时空混沌系统的无模型预测

Length preserving numerical schemes for Landau-Lifshitz equation based on Lagrange multiplier approaches

论文作者

Cheng, Qing, Shen, Jie

论文摘要

我们在本文中开发了基于两种不同的拉格朗日乘数方法的Landau-Lifshitz方程的两类长度保留方案。在第一种方法中,Lagrange乘数$λ(\ bx,t)$等于$ | \ nabla m(\ bx,t)|^2 $在连续水平上,而在第二种方法中,Lagrange乘数$λ(\ bx,t)$被引入以识别级别的层次级别的级别,并在IS ISCERATIATS IS齐平级别上进行了限制。通过使用预测器 - 矫正器方法,我们构建了为Landau-Lifshitz方程保留高阶方案的有效且稳健的长度,其计算成本以预测变量步骤为主,这只是一个半图像方案。此外,通过引入另一个独立于空间的拉格朗日乘数,我们构建了能量耗散,除了保留长度,landau-lifshitz方程的方案,以求解一个非线性代数方程。我们提供了足够的数值实验,以验证所提出的方案的稳定性和准确性,并提供与某些现有方案的性能比较。

We develop in this paper two classes of length preserving schemes for the Landau-Lifshitz equation based on two different Lagrange multiplier approaches. In the first approach, the Lagrange multiplier $λ(\bx,t)$ equals to $|\nabla m(\bx,t)|^2$ at the continuous level, while in the second approach, the Lagrange multiplier $λ(\bx,t)$ is introduced to enforce the length constraint at the discrete level and is identically zero at the continuous level. By using a predictor-corrector approach, we construct efficient and robust length preserving higher-order schemes for the Landau-Lifshitz equation, with the computational cost dominated by the predictor step which is simply a semi-implicit scheme. Furthermore, by introducing another space-independent Lagrange multiplier, we construct energy dissipative, in addition to length preserving, schemes for the Landau-Lifshitz equation, at the expense of solving one nonlinear algebraic equation. We present ample numerical experiments to validate the stability and accuracy for the proposed schemes, and also provide a performance comparison with some existing schemes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源